У Вас в корзине

нет товаров

интернет супермаркет UNI

г.Днепропетровск
Мы не надоедаем по телефону. Сразу после оформления Вами заказа, на емейл указанный Вами при регистрации приходит счет.

Почему Wi-Fi плохо работает и как это исправить.  RSS 2.0

Предыдущая запись     Следующая запись
Почему Wi-Fi плохо работает и как это исправить. Часть 1
Редакция THG,  5 сентября 2011


Прошу вас, выключите питание

"Всё, что вам нужно, блоггеры, – это выключить свои базовые станции, - раздражаясь всё больше и больше, сказал Стив Джобс (Steve Jobs) собравшимся зрителям на показе iPhone 4 в июне 2010 года. – Если хотите увидеть образцы, выключите ноутбуки, все точки доступа Wi-Fi и положите их на пол".

В толпе из 5 000 человек едва ли у 500 были рабочие устройства Wi-Fi. Это был настоящий беспроводной апокалипсис, и даже группа лучших специалистов из Силиконовой долины ничего не могла с этим поделать.

Если этот пример острой необходимости стандарта 802.11 покажется вам неприменимым к повседневной жизни, вспомните сентябрь 2009 года, когда команда THG впервые обратила внимание на технологию от компании Ruckus Wireless в своём обзоре "Технология формирования луча (beamforming): новые возможности WiFi". В той статье мы познакомили читателей с концепцией формирования луча и рассмотрели несколько результатов сравнительных испытаний в достаточно большой по площади офисной среде. На тот момент обзор оказался очень поучительным, но, как оказалось, осталось ещё много того, о чём можно рассказать читателям.

Эта мысль пришла к нам несколько месяцев назад, когда один из наших сотрудников установил для своих детей неттоп, использовав для подключения к своей точке доступа Cisco Small Business-Class 802.11n двухдиапазонный беспроводной USB-адаптер (2,4 ГГц и 5,0 ГГц) Linksys с поддержкой стандарта 802.11n. Производительность этого беспроводного устройства оказалась ужасной. Наш сотрудник даже не смог смотреть потоковое видео с сайта YouTube. Полагаем, проблема заключалась в слабых способностях неттопа к обработке информации и графическому отображению данных. Однажды он попытался заменить устройство на беспроводной мост 7811, описанный в нашей статье "Беспроводные маршрутизаторы 802.11n: тест двенадцати моделей", взяв его из использованного ранее оборудования. И сразу же почувствовал разницу, поскольку потоковое видео теперь можно было смотреть на достаточно неплохом уровне. Словно произошло переключение на проводное соединение Ethernet.

Что же случилось? Наш сотрудник не находился в аудитории вместе с 500 блоггерами, которые блокировали его соединение. Он использовал оптимальное, по общему мнению, оборудование для малого бизнеса Cisco/Linksys, которое лично тестировал и знал, что оно обладает бoльшей производительностью, чем большинство конкурирующих торговых марок. Нам показалось, что переключения на беспроводной мост от Ruckus было недостаточно. Без ответов осталось слишком много вопросов. Почему один продукт показал бoльшую производительность, чем другой? И почему в первоначальной статье указано, что на производительность оказывает влияние не только слишком близкое сходство между клиентом и точкой доступа, но также и форма самой AP (точка доступа)?

Вопросы, оставшиеся без ответа

Шесть месяцев назад компания Ruckus попыталась разработать тестовый сценарий, чтобы помочь нам разобраться с вопросами, оставшимися без ответа, путём анализа воздействия эфирных электромагнитных помех на производительность оборудования Wi-Fi, но, прежде чем тесты успели начаться, компания остановила эксперимент. Специалисты из Ruckus установили генераторы высокочастотного шума и стандартные клиентские машины, но измерение результатов теста, полученных в одну минуту, сменялось совершенно другими значениями через две минуты. Даже приведение к среднему значению пяти результатов измерений в заданном месте было бы бессмысленным. Вот почему вы никогда не видели, чтобы в прессе печатали реальные исследования помех. Настолько трудным оказывается управление средой и переменными, что тестирование становится абсолютно невозможным. Поставщики могут сколь угодно долго говорить обо всех тех значениях производительности, которые были получены в ходе тестирования оптимальных конфигураций в звуконепроницаемых камерах с высокочастотными колебаниями, но вся эта статистика бессмысленна в реальном мире.

Честно говоря, мы никогда не видели, чтобы кто-нибудь объяснял и исследовал данные вопросы, и потому решили перехватить инициативу, пролив свет на природу производительности устройств Wi-Fi и раскрыв их сокровенные тайны. Обзор будет достаточно большим. Нам есть что вам рассказать, поэтому мы собираемся разделить статью на две части. Сегодня мы с вами ознакомимся с теоретическими аспектами (как работает оборудование Wi-Fi на уровне данных и аппаратном уровне). Затем мы продолжим дополнять теорию практикой – собственно тестирование в большинстве экстремальных беспроводных сред, с которыми мы когда-либо сталкивались; сюда входят 60 ноутбуков и девять планшетов, все испытывались на одной точке доступа. Чья технология выдержит, а чья окажется далеко позади конкурентов? К тому моменту, как мы закончим наше исследование, вы не только получите ответ на этот вопрос, но и поймёте, почему мы получили именно такие результаты и каким образом работают технологии, скрывающиеся за этими результатами.

Перегрузка сети против захвата линии

Обычно мы используем слово "перегрузка", описывая случаи избыточной нагрузки беспроводного трафика, но, когда дело касается важных вопросов о сетях, перегрузка на самом деле ничего не означает. Лучше использовать термин "захват". Пакеты информации должны соперничать друг с другом за право быть отосланными или полученными в подходящий момент, когда при передаче трафика появляется свободный промежуток. Запомните, что Wi-Fi – это полудуплексная технология, и потому в любой заданный момент на канале может передавать данные только одно устройство: или AP, или один из её клиентов. Чем больше оборудования в беспроводной локальной сети, тем более важным становится управление захватом линии, поскольку за эфир соперничает много клиентов.

При склонности беспроводных сетей связи к постоянному быстрому росту, в высшей степени важным становится то, кто именно готовится передавать данные и когда. И здесь существует только одно правило: кто обменивается информацией в тишине, тот выигрывает. Если никто не пытается передавать данные в тот же момент, что и вы, тогда вы сможете взаимодействовать с нужными устройствами беспрепятственно. Но если два или более клиентов попытаются выполнить то же одновременно, возникнет проблема. Это как если бы вы разговаривали со своим приятелем при помощи переносной рации. Когда говорите вы, вашему другу приходится ждать и слушать. Если вы оба попытаетесь заговорить в одно и то же время, ни один из вас не услышит друг друга. Для эффективного общения и вы, и ваш друг должны управлять доступом к эфиру и захватом линии. Вот почему вы произносите что-то типа "приём", когда заканчиваете говорить. Вы подаёте сигнал о том, что эфир свободен и может говорить кто-то другой.

Если вы когда-нибудь отправлялись в дорогу с переносной рацией, то могли заметить, что у неё есть только несколько доступных каналов — а ещё вокруг очень много людей, кому тоже пришла в голову идея прогуляться с рацией в руках. Особенно это касается времени, когда ещё не было дешёвых сотовых телефонов - казалось, что у каждого встречного есть рация. Возможно, вы с другом и не поговорили бы, но рядом с вами находились и другие люди с рациями, которые, как потом выяснялось, использовали тот же канал. Каждый раз, как вы собирались вставить слово, кто-то уже занимал ваш канал, заставляя вас ждать... и ждать... и ждать.

Подобный вид помех называется "внутриканальными" помехами, при которых те, кто создаёт помехи, затрудняют обмен данными на вашем канале. Для того, чтобы решить проблему, вы можете попытаться переключиться на другой канал, но, если не будет доступно ничего лучше этого, вы будете вынуждены работать с очень, очень медленными скоростями передачи данных. Вам придётся передавать данные только тогда, когда все болтливые болваны вокруг вас замолкнут на мгновение. Возможно, вам и нужно-то сказать всего ничего, например, "Ну и дела! Опять эти внутриканальные помехи!", но вы должны будете ждать 15 минут до мгновения затишья, во время которого вы сможете отпустить краткое, лаконичное замечание.

Источники помех

Сложным в этой проблеме с внутренними помехами каналов является тот факт, что поток трафика Wi-Fi никогда не бывает равномерным. Мы имеем дело с высокочастотными (RF) помехами, случайным образом вмешивающимися в маршрут пакетов, наносящими удар в любом месте, в любое время и длящимися разное время. Помехи могут возникать из-за целого ряда различных источников, начиная с космических лучей и заканчивая конкурирующими беспроводными сетями. Например, микроволновые печи и беспроводные телефоны являются довольно известными "обидчиками" в диапазоне 2,4 ГГц.

В качестве иллюстрации представьте, что играете с другом в машинки Hot Wheels, и каждая машина, которую вы толкнёте по полу к другу, изображает пакет данных. Помехи – это ваш младший брат, играющий в шарики с другом напротив вашей транспортной колонны. Возможно, шарик и не ударится о вашу машинку в какой-то заданный момент времени, но очевидно, что в неё так или иначе попадут. Когда столкновение произойдёт, вам придётся прекратить игру, взять пострадавшую машинку и отнести её на линию старта, попытавшись снова запустить её. И, как и все сорванцы, ваш маленький братишка не всегда играет только в шарики. Иногда он бросает в вашу сторону надувной мяч для игр на пляже или плюшевую собаку.

Эффективная сеть Wi-Fi связана, прежде всего, с управлением беспроводного или радиочастотного диапазона — необходимо помочь пользователю как можно быстрее получить доступ к беспроводному "шоссе" и "покидать" его. Как вы заставляете свои машинки Hot Wheels ехать быстрее и направляете их точнее? Как делаете так, что всё больше и больше машин снуют туда-сюда, не обращая внимания на жалкие попытки младшего брата испортить вам настроение? В этом и заключается секрет поставщиков оборудования для беспроводных сетей.

Разница между трафиком и помехами Wi-Fi

Мы вернёмся к этому чуть позже, но прежде поймите, что стандарт 802.11 делает много такого, что позволяет регулировать управление пакетами. Вернёмся к автомобильным метафорам. Когда вы едете по дороге в автомобиле, то вы сталкиваетесь с правилами ограничения скорости передвижения и другими помехами, которые влияют на то, как именно ведёт себя ваша машина при определённых характеристиках. Но если на вашем месте окажется ваша прабабушка в своих очках с толстыми линзами, которая слушает Лоренса Уэлка (Lawrence Welk) и плетётся по федеральной восьмиполосной автостраде со скоростью 35 миль в час, то другие водители скоро потеряют терпение и начнут сигналить ей. Движение на дороге замедлится. Но все будут продолжать ехать, даже при такой сниженной скорости.

Это аналогично тому, что происходит, когда трафик Wi-Fi вашего соседа попадает в вашу беспроводную сеть. Поскольку весь трафик подчиняется стандарту 802.11, все пакеты управляются при помощи одних и тех же правил. Нежелательный трафик, встречающийся вам на пути, замедляет общее перемещение пакетов, но он не обладает тем же воздействием, как, например, излучение от микроволновой печи, которое не подчиняется правилам и просто проносится через различные полосы движения Wi-Fi (каналы), словно группа пешеходов-самоубийц.

Очевидно, относительное воздействие радиочастотного шума в устройствах Wi-Fi с границами диапазона частот 2,4 и 5,0 ГГц проявляет себя хуже, чем у конкурента – трафика WLAN (wireless LAN – беспроводная локальная сеть), но одна из целей при улучшении производительности идёт на пользу и той, и другой сети. Как мы увидим далее, для того, чтобы этого добиться, есть масса способов. А пока просто запомните, что все эти части трафика, конкурирующие между собой, и помехи, в конце концов, становятся фоновым шумом. Пакетированный поток данных, который начинает движение довольно мощно, при -30 дБ, в результате постепенно затихает, до -100 дБ и менее на некотором расстоянии. Такие уровни слишком низкие, чтобы быть чёткими для точки доступа, но они всё же могут нарушать трафик, также, как та старушка в очках с толстыми линзами.

На войне и в эфире все средства хороши

Давайте поговорим о том, как точки доступа (включая маршрутизаторы) управляют правилами передачи трафика. Вспомните обычный двухполосный въезд на скоростную автостраду. На каждой полосе выстраиваются в линию машины и на каждой из них есть светофор. Скажем, каждому потоку зелёный свет горит пять секунд.

Беспроводная сеть слегка изменила эту идею при помощи процесса, называемого эфирная равнодоступность. Точка доступа оценивает количество существующих клиентских устройств и устанавливает равные временные интервалы устойчивой связи для каждого устройства, как если бы камера, следящая за въездом на магистраль, смогла оценить количество машин, попавших в "пробку" и использовала бы эту информацию для того, чтобы решить, сколько должен гореть зелёный свет. До тех пор, пока свет остаётся зелёным, автомобили могут продолжать двигаться по въезду на магистраль. Когда свет переключится на красный, движение по данной полосе остановится, и тогда зелёный свет загорится для следующей полосы.

Предположим, на этой магистрали три полосы, по одной на каждый стандарт: 802.11b, 11g и 11n. Очевидно, что пакеты информации передаются с разными скоростями; это как если бы одна полоса была предназначена для передвижения на скоростных спортивных машинах, а другая – для медленных большегрузных трейлерах. За определённый интервал времени в своём трафике вы получите больше "быстрых" пакетов, чем медленных.

Без принципа эфирной равнодоступности трафик снижается до наименьшего общего знаменателя. Все транспортные средства выстраиваются на одной полосе в одну линию, и если быстрая машина (11n) оказывается в пробке за автомобилем со средними скоростями (11b), вся цепочка снижает скорость до скорости этого "среднего" авто. Вот почему, если вы довольно часто анализируете трафик при помощи потребительских маршрутизаторов и точек доступа, то приходите к выводу, что производительность может резко упасть, если вы подключаете старое устройство 11b к сети 11n; именно поэтому многие точки доступа имеют в наличии режим "только 11n". Такой подход, конечно же, заставляет точку доступа игнорировать более медленное устройство. К сожалению, большинство потребительских продуктов Wi-Fi пока ещё не поддерживают эфирную равнодоступность. Это свойство настолько быстро становится популярным в деловых кругах, что мы надеемся, что вскоре оно доберётся и до обычных пользователей.

Когда с хорошими пакетами случаются плохие вещи

Довольно о машинах. Давайте рассмотрим пакеты данных и помехи под другим углом зрения. Как говорилось раньше, помехи могут ворваться в эфир в любое время и длиться любое количество времени. Когда шум попадает в пакет данных, последний становится испорченным и его необходимо отсылать ещё раз, что приводит к задержке и увеличению общего времени отсылки.

Когда мы говорим, что хотим получить более высокую производительность, скорее всего, это означает, что мы хотим, чтобы наши пакеты данных были доставлены от точки доступа до клиента (или наоборот) намного быстрее. Для того, чтобы это произошло, точки доступа стремятся использовать одну или все три тактики: снижение скорости передачи данных на физическом уровне (PHY), снижение мощности передачи (Tx) и смена радиоканала.

PHY похожа на знак, предупреждающий об ограничении скорости (мы пытаемся отойти от примеров с машинами, честное слово!). Это теоретическая скорость передачи данных, при которой, как полагают, трафик начинает изменяться. Когда ваш беспроводной клиент говорит, что вы подключены к скоростям в 54 Мбит/с, фактически, вы не передаёте пакеты данных при такой скорости. Это всего лишь уровень одобренной скорости, при которой точка доступа и аппаратные средства всё ещё взаимодействуют. То, что происходит с пакетами и с реальными нормами выработки, мы поймём, после того как увидим это согласование.

Скорость передачи данных на физическом уровне (PHY)

Когда в беспроводной поток информации врывается шум, что приводит к началу повторных отсылок пакетов, точка доступа может перейти на скорость ниже физической. Это похоже на разговор в замедленном темпе с кем-то, кто не разговаривает на вашем языке бегло и в мире проводных сетей это работает замечательно. Наш пакет передавался до этого со скоростью 150 Мбит/с. Физическая скорость снизилась до 25 Мбит/с. Столкнувшись с появлением случайных шумов, мы задались вопросом, что происходит с вероятностью того, что наш пакет данных столкнётся с другим потоком помех? Она растёт, правильно? Чем дольше пакет данных находится "в воздухе", тем выше вероятность того, что он столкнётся с помехами. И потому да, методика снижения физических скоростей, которая так хорошо работала в проводных сетях, сейчас становится обязанностью беспроводных сетей. Что ещё хуже, низкие физические скорости делают связь каналов Wi-Fi (при которой два канала при 2,4 или 5,0 ГГц используются в тандеме для повышения пропускной способности) намного более сложной, потому что существует риск для каналов на разных частотах работать с разными скоростями.

Невероятно и печально то, что практика использования метода снижения физических скоростей всё увеличивается. Почти каждый вендор использует этот метод несмотря на то, что это приводит к обратным результатам в отношении производительности.

Что вы говорите?

В некоторой степени, беспроводные сети – это всего лишь "большая перебранка". Представьте, что вы находитесь на званом обеде. Сейчас 18:00, и пришли только несколько человек. Они о чём-то размышляют, негромко переговариваясь. Вы слышите шёпот голосов и гул кондиционера. К вам подходит ваш коллега, и у вас не возникает проблем с поддержкой разговора. Четырёхлетние малыши хозяина дома подходят к вам и начинают петь песенку из "Улицы Сезам". Но даже при этих трёх источниках помех у вас с партнёром нет проблем в понимании друг друга, частично из-за того, что ваш партнёр вырос в большой семье и разговаривает громко, словно в рупор.

В данном примере звуки разговора других людей и работы кондиционера являются "минимальным уровнем шума". Он всегда присутствует, всегда на этом уровне. Когда мы говорим о том, сколько помех воздействует на ваш разговор, то не принимаем во внимание минимальный уровень шума. Это как если бы мы поставили поднос на кухонные весы, а затем нажали кнопку, чтобы значение веса стало равным нулю. Поднос на весах и фоновый шум являются постоянными, совсем как фоновый радиочастотный шум, окружающий нас. В каждом окружении есть свой собственный минимальный уровень шума.

Тем не менее, ребёнок и его восхищение Большой птицей (Big Bird - персонаж "Улицы Сезам") являются помехами. Притом, что ваш партнёр громко разговаривает, вы всё же можете эффективно общаться, но что происходит, когда ваш учтивый друг подходит к вам и вступает в дискуссию? Вы оказываетесь тем, кто кидает раздражённые взгляды на танцы малыша и переспрашиваете у своего собеседника – "что?".

В противовес фоновому радиочастотному минимальному уровню шума мы поставили беспроводной телефон с измеренным значением шума на уровне -77 дБ в месте расположения нашего клиентского устройства. Это наш поющий четырёхлетний малыш. Если у вас есть внушающая доверие точка доступа, передающая только сигнал -70 дБ, то этого будет достаточно, чтобы клиент "услышал" эти данные, несмотря на помехи, но не слишком большие. Разница между минимальным уровнем шума и принимаемым (слушаемым) сигналом составляет всего лишь 7 дБ. Тем не менее, если у нас будет точка доступа, передающая данные с более громким звуком, скажем, при -60 дБ, тогда мы получим намного более существенную разницу в 17 дБ между помехами и принимаемым сигналом. В случае, когда вы сможете без каких-либо проблем услышать кого-то, разговор станет протекать в намного более эффективном ключе, чем тогда, когда вы едва слышите то, что вам говорят. Более того, подумайте, что произойдёт, когда другой четырёхлетний малыш захочет спеть что-нибудь из репертуара Леди Гаги. Два поющих ребёнка, скорее всего, заглушат вашего дружелюбного друга, тогда как вашего более говорливого собеседника всё ещё будет ясно слышно.

Что вы говорите? – Я говорю "SINR"!

В мире радио диапазон от минимального уровня шума до принимаемого сигнала – это соотношение сигнал/шум (SNR – signal-to-noise ratio). Это то, что вы видите распечатанным практически на каждой точке доступа, но это не совсем то, что вас заботит. В действительности, вас интересует промежуток начиная с верхнего уровня помех и заканчивая принимаемым сигналом, то есть отношение сигнала/шум с учётом их влияния друг на друга (SINR), вот что имеет смысл. Не то чтобы вы могли всегда узнавать заранее, каким окажется сигнал SINR, поскольку нельзя определить уровень помех в заданное время и место, пока вы их не измерите. Но зато вы можете почувствовать средний уровень помех отдельного окружения. Наряду с этим у вас появятся идеи получше о том, какой именно уровень сигнала необходим точке доступа для поддержания функциональности на высоком уровне.

Зная это, вы можете спросить: "Почему, скажите на милость, кому-то может понадобиться снижать силу передачи сигнала (Tx), несмотря на помехи?" Хороший вопрос, поскольку это одна из трёх стандартных реакций на повторную отсылку пакетов. Ответ заключается в том, что падение силы сигнала Tx уплотняет зону покрытия AP. Если у вас есть источник шумов с внешней стороны вашей зоны покрытия, эффективное исключение этого источника из диапазона осведомлённости AP освобождает последнюю от необходимости пытаться справиться с проблемой. При условии, что клиент находится в уменьшенной зоне покрытия, это может помочь значительно уменьшить внутриканальные помехи и улучшить общую производительность. Однако если ваш клиент также находится во внешнем диапазоне покрытия AP (как Клиент 1 на нашем рисунке), тогда он просто выпадает из поля зрения. Даже в самом благоприятном случае падение мощности передачи сильно снизит зону покрытия, то есть значение SINR, и оставит вас со сниженными скоростями передачи данных.

Так много каналов, а смотреть нечего

Как мы увидели, первые два общепризнанных подхода для работы с помехами снижают физическую скорость и уменьшают мощность. Третий принцип – это тот, которого касается пример с переносной рацией: изменение беспроводного канала, который, фактически, меняет частоту, на которой перемещается сигнал. Это ключевая идея, лежащая в основе технологии расширенного спектра, или скачкообразной перестройки частоты, которая была открыта Николой Тесла (Nikola Tesla) в 20 веке и получила весьма широкое применение в военных целях во время Второй мировой войны. В одно мгновение знаменитая и красивая актриса Хиди Ламарр (Hedy Lamarr) помогла открыть способ скачкообразной перестройки частоты, который помогал выводить из строя радиоуправляемые торпеды. Когда данный подход используется на большем диапазоне частот, чем тот, в котором обычно передаётся сигнал, тогда его называют уже расширением спектра.

В устройствах Wi-Fi используется технология расширения спектра, в первую очередь, для увеличения полосы пропускания, надёжности и безопасности. Всякий, кто когда-либо зависел от настроек своих устройств Wi-Fi, знает, что на полосе от 2,4 до 2,4835 ГГц есть 11 каналов. Тем не менее, поскольку общая ширина полосы пропускания, использованная для 2,4 ГГц Wi-Fi расширения спектра, составляет 22 МГц, вы получаете частичное наложение этих каналов друг на друга. На самом деле, скажем, в Северной Америке у вас в распоряжении окажутся только три канала — 1, 6 и 11, — которые не пересекутся. В Европе можно использовать каналы 1, 5, 9 и 13. Если вы применяете стандарт 2,4 ГГц 802.11n с 40 МГц шириной канала, то ваш выбор уменьшается до двух: каналов 3 и 11.

В 5 ГГц диапазоне дела идут чуть лучше. Тут мы располагаем 8 непересекающимися внутренними каналами (36, 40, 44, 48, 52, 56, 60 и 64.) Высокопроизводительные точки доступа обычно совмещают радиовещание как в диапазоне 2,4 ГГц, так и 5,0 ГГц, и правильно будет предположить, что на полосе пропускания 5,0 ГГц меньше помех. Всего лишь избавление от 2,4 ГГц помех Bluetooth может привести к большим изменениям. К сожалению, конечный результат неизбежен: спектр 5,0 ГГц в настоящее время наполняется трафиком, точно так же, как это было со спектром 2,4 ГГц. При 40 МГц ширине каналов, применяемой в стандарте 802.11n, число непересекающихся каналов резко сокращается до четырёх (динамический выбор частоты (dynamic frequency selection, DFS), каналы исключаются из-за возникающих у военных проблем, связанных с конфликтом сигналов радаров), и пользователи уже временами сталкиваются с ситуациями, когда в диапазоне нет ни одного достаточно открытого канала. Это как если бы у нас было больше телевизионных каналов, которые можно было бы смотреть целый день и по которым не показывали бы ничего, кроме рекламных роликов о личной гигиене. Такое мало кто захочет смотреть с утра до ночи.

Всенаправленные, но не всесильные

Что ж, пока мы сообщили вам достаточно плохих новостей. Но их больше. Пришло время поговорить об антеннах.

Мы упомянули уровень сигнала, но не направление сигнала. Как вы, вероятно, знаете, большинство антенн не имеют определённого направления действия. Как комплект колонок, выдающих громкие звуки одновременно во все стороны (с закреплёнными микрофонами, ловящими звуки равномерно со всех 360 градусов), всенаправленные микрофоны гарантируют вам отличное покрытие. Не имеет значения, где расположен клиент. Пока он находится в диапазоне покрытия, всенаправленная антенна будет в состоянии обнаружить и связаться с ним. Недостаток заключается в том, что та же самая всенаправленная антенна перехватывает ещё и любой другой источник шума и помех в заданном диапазоне. Всенаправленные системы улавливают всё – хороший звук, плохой, ужасный, — и с этим вы вряд ли что-нибудь сделаете.

Представьте, что вы стоите в толпе и пытаетесь поговорить с кем-то, кто находится в нескольких метрах от вас. Из-за окружающего вас шума вы едва ли можете что-нибудь расслышать. И что же вы предпримете? Ну конечно, поднесёте к уху ладонь. Вы попытаетесь лучше сфокусироваться на звуке, идущем с одного направления, одновременно блокируя звуки, исходящие с других направлений, то есть те, которые "закрыла" ваша ладонь. Ещё лучший звукоизолятор – это стетоскоп. Это устройство пытается блокировать все звуки окружающей среды при помощи наконечников-заглушек, вставляемых в уши и позволяющих проходить только звукам, исходящим из грудной клетки.

В мире радио эквивалентом стетоскопа является технология, называемая "формирование луча".

И снова о технологии формирования луча

Целью технологии формирования луча является создание в определённом месте зоны с повышенной энергией волн. Классический пример этого явления: капли воды, падающие в бассейн. Если бы над ним были два крана и вы открывали каждый кран в точно определённый момент так, чтобы они время от времени выпускали синхронизированные по времени капли воды, концентрические волны-кольца, расходящиеся от каждого эпицентра (там, куда попадают капли), создали бы частично накладывающиеся друг на друга узоры. Вы видите такую модель на иллюстрации выше. Там, где волна оказывается в высшей точке пересечения с другой волной, вы получаете дополнительный эффект, при котором энергия обеих волн объединяется и ведёт к образованию ещё большего гребня в форме волны. Из-за регулярности падения капель такие усиленные гребни ясно видны в определённых направлениях, они составляют нечто вроде "луча" усиленной энергии.

В данном примере волны расходятся во всех направлениях. Они равномерно стремятся наружу от точки возникновения, пока не достигнут какой-либо противодействующий объект. Сигналы Wi-Fi, испускаемые с всенаправленной антенны, ведут себя таким же образом, выпуская волны радиочастотной энергии, которая, при объединении с волнами от другой антенны, может образовать лучи повышенного уровня сигнала. Когда в фазе у вас есть две волны, в результате может получиться луч с почти удвоенным уровнем сигнала, по сравнению с первоначальной волной.

Используемые во всех направлениях

Как видно из предыдушей фотографии уровня помех, формирование лучей с всенаправленных антенн происходит в многочисленных, часто противоположных, направлениях. Изменяя синхронизацию сигналов на каждой антенне, можно контролировать форму модели формирования луча. Это неплохо, потому что позволяет сфокусировать энергию в меньшем количестве направлений. Если бы ваша точка доступа "знала", что её клиент находится в положении на три часа, было ли бы разумным посылать луч на 9 или 11 часов? Ну, да... если присутствие этого "потерянного" луча неизбежно.

На самом деле, если имеешь дело с всесторонне направленными антеннами, то подобная потеря действительно неизбежна. Говоря техническим языком, то, что вы видите в верхнем ряду, – это результат действия фазированной антенной решётки (ФАР) – группы антенн, в которой относительные фазы соответствующих сигналов, питающих антенны, различаются таким образом, что модель эффективного излучения решётки усиливается в требуемом направлении и подавляется в нескольких нежелательных направлениях. Это похоже на сжатие средней части не полностью надутого воздушного шара. При усилении сжатия получим часть шарика, чрезмерно выдающуюся в каком-то одном направлении, но также мы столкнёмся с соответствующим выбросом и в другом направлении. Вы можете это увидеть на рисунке выше, где верхний ряд показывает различные модели формирования луча, образованные двумя дипольными всенаправленными антеннами.

Внесение изменений в ходе формирования луча

Очевидно вы хотите, чтобы формируемая зона покрытия луча захватывала клиентское устройство. При формировании луча фазированной антенной решёткой, как проиллюстрировано на рисунках выше, в верхних строчках (на этот раз взяты три дипольных антенны), точка доступа анализирует сигналы, исходящие от клиента, и использует алгоритмы для изменения модели излучения, таким образом меняется направление прохождения луча для лучшего нацеливания на клиента. Данные алгоритмы высчитываются в контроллере точки доступа, вот почему иногда можно увидеть другое название этого процесса – "chip-based beamforming". Эта технология также широко известна под именем направленной передачи сигнала у Cisco и других компаний, и она остаётся дополнительным, не имеющим широкого распространения, компонентом спецификации 802.11n.

Фазированная антенная решётка с аппаратным управлением – это метод, используемый большинством производителей, которые в настоящее время широко рекламируют поддержку технологии формирования луча в своих товарах. Компания Ruckus не пользуется таким методом. В этом отношении, мы ошиблись в нашей предыдущей статье. На шестой странице наш автор утверждал, что "Ruckus использует метод формирования луча "на антенне" - технологию, разработанную и запатентованную Ruckus ... [при которой] применяется антенная решётка". Но это не тот случай. Формирование луча фазированной антенной решёткой требует использования большого количества антенн. Подход Ruckus отличается от этого метода.

По технологии Ruckus можно направлять луч на каждую антенну, независимо от других антенн. Это достигается путём намеренного размещения металлических объектов поблизости от каждой антенны в антенной решётке, чтобы самостоятельно влиять на модель излучения. Вскоре мы вернёмся к этому вопросу и постараемся более основательно его изучить, но несколько разных типов моделей формирования луча с применением подхода Ruckus вы можете увидеть во втором ряду на рисунках выше. Глядя на оба подхода одновременно нельзя определить, какой из них даст самую высокую практическую производительность. Фазированная решётка из трёх антенн формирует более сфокусированный луч, чем блоки относительного покрытия от Ruckus. Интуитивно мы можем предположить, что чем больше сфокусирован луч, тем выше производительность, если все остальные факторы равны. Будет интересно узнать, так ли это, в ходе наших тестов.

Я вас не слышу!

Помните эффект от прикладывания ладони к уху? Исключение помех, исходящих с нежелательной стороны, может улучшить качество приёма, даже несмотря на то, что клиент не изменял характер испускания сигналов. Согласно данным компании Ruckus, простое пренебрежение сигналами с противоположного направления может принести клиенту до 17 дБ дополнительно из-за исключения помех.

В то же время, улучшение силы передаваемого сигнала может добавить дополнительно 10 дБ. Учитывая предыдущее объяснение о влиянии силы сигнала на пропускную способность, вы поймёте,

Рекомендуемые прочитать

Cупер кэш для твоего диска
Как совершенно легально снять блокировку iCloud Activation Lock на своем iPhone, iPad и iPod
Android-x86 - Портирование Android на x86 Вопрос Play Market Android Market
От песка до процессора
Разделы внутренней памяти ROM Android - проясним наболевшее о разметке системной памяти Android

Комментарии ВКонтакте

Комментарии Facebook

Комментарии

Нет отзывов к этой записи

Написать отзыв

Введите число, изображенное на рисунке
code

 
 
       
    Яндекс.Метрика